Team 208 Component Selection

Major components

Barrel Jack (<u>Digikey</u>) 12V Battery (<u>Digikey</u>) Voltage Regulator (<u>Digikey</u>)

Temperature Sensor

Solution	Pros	Cons
Option 1: AT30TS74-SS8M-B	 High operating temperature range (-55 C ~ 125C) Uses I2C Serial Interface Configurable temperature limits Inexpensive 	
Digital Temperature Sensor, Local -55°C ~ 125°C 11 b 8-SOIC \$0.82/each Link to Product		
Option 2: MCP9700T-E/TT	 High operating temperature range (-40 C ~ 125C) Inexpensive 	 Analog output, requires ADC +/- 6 degree accuracy
AnalogTemperature Sensor, Local -40°C ~ 125°C 10mV/°C SOT-23-3		

\$0.30/each Link to Product		
Option 3: NCT75MNR2G	 High operating temperature range (-55 C ~ 125C) Accuracy of 1°C 	 Voltage supply of 3V -5.5V
Digital Temperature Sensor, Local -55°C ~ 125°C 11 b 8-DFN (2x2) \$0.83/each Link to Product		

Choice: AT30TS74-SS8M-B

Rationale: The AT30TS74-SS8M-B has a high operating temperature range, makes use of I2C which satisfies a course requirement and has good documentation to facilitate working with it.

Wind Speed Sensor

Solution	Pros	Cons
Option 1: 1528-1328 (1733)	 Accuracy of +/- 0.3 m/s Measuring range of 32.4m/s Compact size, easy to carry, easy to install 	 Expensive Volt. Regulator needed 7-24V voltage range (9V Recommended) Note: not many info in the datasheet
Link to product		
Option 2: SEN0483	 Accuracy of +/- 0.3 m/s 	ExpensiveSupply voltage 7- 24V

Wind Speed Sensor Analog Output \$45/each Link to Product	 Measuring range of 32.4m/s Compact size, easy to carry, easy to install 	
Option 3: DWS-V-DAC13	 It is used in many applications 	 Expensive 10 - 28 V

Choice: Adafruit 1733

Rationale: Despite the lack of a readable datasheet (available in Chinese), the Adafruit 1733 has a ton of external documentation and use cases to provide a smooth use and easy debugging.

Motor Driver

Solution	Pros	Cons
Option 1:	 Experience with it in class. Work with 3.3V (what we intend on using) Has a very good data sheet Low standby current 	 Most expensive option. It has many pins (can be difficult to solder)
Option 2: A3909GLYTR-T \$1.50 Each Link to Product	 Most inexpensive option. 1A for output current Supply Voltage at 12V Very good datasheet. 	 No experience with this option Has many pins (may be difficult to solder) Power supply at 4V when we are using 3.3V Does not show SPI channels
Option 3:	 Not as expensive as option 1 	No experience with this option

Solution	Pros	Cons
Carlo Carlo	 Has the least pins, it may be easier to use or set up. May be easier to solder than other options. Vref 3-15V 	 Does not show SPI channels Not a very good datasheet (does not tell you how to work with it)
BD6221F-E2		
\$2.74 Each Link to Product		

Choice:IFX9201SGAUMA1

Rationale: This seems like the best option for the application because we already are working with it, although it is the most expensive option and has the most pins, I believe already knowing how it works cancels all that out.

Motor

Solution	Pros	Cons
Option 1:	 Very easy to get/inexpensive Has a good operating voltage (1-5v) A fast motor which gives us more speeds to work with. 	 Very high starting current (874mA) 5V Rated Voltage Motor is most efficient around 500mA
M1N10FB11G \$3.38 Each <u>Link to Product</u>		
Option 2:	 Has a operating voltage around 3V Inexpensive Stall Current at 	 Torque is concerningly low, may not be able to spin anything too quick (for our

VQ4TL2BQ380001 \$3.61 Each Link to Product	130mA • Starting Voltage 2V	application this is very important)
Option 3: PKN12EB105C1	 Power rated at 2.2 W Most efficient at 290mA Current at Max Power is 500mA 	 Most expensive option It is small Not as quick as other options

Choice:PKN12EB105C1

Rationale: Although the motor is very small, because we are flexible with the material of our project we can possibly implement smaller blades so we could use the small motor. This option also seems to be the most efficient compared to the other two options and seems more friendly toward our constraints.

Solution	Pros	Cons
	 It is the same voltage regulator we used in class except 	 Have to be careful with current, it will overheat easily if

Option 1:	 it is surface mount. Output is 3.3V but it is adjustable. Datasheet is very helpful. It is very efficient. 	over load current. • Turns off if input voltage is more than 1.4V
NCV2575D2T-5R4G Link to Product		
Option 2:	 Has a very helpful datasheet 1A load current 89% efficiency. 	 Output voltage only from 0.6V-3.6V (very constraining)
AP61100Z6-7 Link to Product		
Option3:		
MP2172CGQFU-Z Link to product		

Choice:NCV2575D2T-5R4G

Rationale: When deciding on our components, we wanted to try and use as many components from class as possible. Not only is the component we used in class much more convenient to use, we believe it is the best option that we could find.